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A method for modelling an engine nacelle in a compressible flow using a source distribution. 
is described. The incorporation of this technique into a free boundary supercritical wing 
design code is discussed. Results of calculations made with this code are presented. A method 
for calculating wave drag is also described. ,‘” 1987 Acade~nrc Press, inc. 

1. INTRODUCTION 

A principal goal of computational transonic aerodynamics is to develop com- 
putational methods for the analysis of transonic flows and for the design of efficient 
transonic aircraft. We are interested, in particular, in the problem of designing 
wings with only weak shocks at a given Mach number and angle of attack. 
Methods exist for the design of shockless transonic airfoils [ 1, 31 and for com- 
puting the transonic flow about a given wing [S, 91. One approach to the design of 
a low drag transonic swept wing is to start with a shockless airfoil in each wing 
section. Three-dimensional effects will cause shocks on such a wing, but we expect 
them not to be too severe. By small readjustments of the wing surface, which can be 
made by a code which treats the wing surface as a free boundary, we can redesign 
the wing to reduce the strength of the shocks. Our method takes this program one 
step further. If an obstacle, such as an engine nacelle, is placed in the flow near an 
almost shockless wing, sizeable shocks can be expected to appear on the wing. We 
have incorporated a model of such an obstacle into the free boundary design code 
FL221NV in order to redesign wings under more realistic conditions. 

Our work is an extension of that of Bauer et al. [4]. Their method is based on 
the MurmanCole relaxation procedure. The idea is to specify a reasonable, smooth 
pressure distribution over the upper wing surface and to treat that surface as a free 
boundary. The free boundary moves during the course of the relaxation procedure 
so that the prescribed pressure distribution is achieved. We have incorporated in 
their code a model of an engine nacelle by adding an inhomogeneous term to the 
potential equation. The obstacle is thus represented by a fluid source, as in the 
method of images of incompressible flow theory. 

The basic difficulty in computing the flow about a wing and nacelle combination 
is the generation of an appropriate computational grid. If we were interested in the 
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details of the flow about a nacelle, this difficulty would be unavoidable. However, 
our goal is only to model the effect of a nacelle on the flow about a wing. 
Specifically, we want to be able to redesign a wing to eliminate the wave drag 
associated with the shocks on the wing caused by the presence of a nacelle. For this 
purpose our crude model of a nacelle, which allows us to avoid the grid generation 
problem, is sufficient. 

2. COMPUTATIONAL PROCEDIJRE 

We consider the irrotational, isentropic flow of air past a swept wing on a wall, 
with a mass source distribution f: Such a flow is governed by the inhomogeneous 
potential equation 

for the velocity potential 4, which is related to the velocity components by 
V4 = (u, v, w). We normalize 4 so IV41 = 1 in the free stream. To enforce this free 
stream condition we write 4 =x cos(a) + y sin(m) + G, where LY is the angle of attack. 
We impose the decay condition aG/&z f (G = 0 on G at a control surface [4]. The 
constant 5 is fixed empirically. The density p, the pressure P = P’.~, and the square 
of the sound speed c2 = aP/dp, can all be expressed in terms of 4 via Bernoulli’s law, 

0.5 lV&” + 2.5~~ = 0.5 +$$, 
cc 

where M, is the free stream Mach number. The normal derivative of 4 is zero on 
the wing surface and on the wall. A linearized model of the vortex sheet is used [IS]. 
At a shock in this isentropic flow model, mass and the tangential momentum com- 
ponents are conserved, but the normal momentum component must have a jump 
since entropy is conserved. 

For the computation, the physical space is mapped to a computational domain 
where a rectangular finite difference grid is set up. First a square root transfor- 
mation is used to map the physical space to half-space. This mapping takes the 
wing surface to a surface Y= S(X, Z) in parabolic coordinates. Next a shearing 
transformation y= Y - S(X, Z), x= X, 2 = Z, takes the wing to a patch on the 
plane Ei=O. A final mapping takes the $ y, Z quadrant containing the flow 
domain into a box. We also use this mapping to concentrate grid points near the 
source, i.e., near the points where f # 0. The purpose of this grid squeezing, which is 
accomplished with polynomials, is discussed in the next section. We choose X,,, 
and -Lax so that the image of the wing lies in the rectangle 0 < .?-=E Z,,,, 
1x1 <Xmal in the plane Y=O. We choose yQ, Fbbr 2,, 2, with yQ< yb and T,<Z, 
such that the source representing the nacelle lies on the line 8= t( Fa + P,), 
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2 = $(p, + 2,) in the computational domain. We can write explicit formulas only 
for the inverse mapping 

Here P?, and P, are seventh-degree polynomials which are constructed so that the 
mappings are twice continuously differentiable. This leaves two parameters for each 
polynomial. These are used to specify the values of the polynomials and their 
derivatives at the midpoints of the intervals. The values of the derivatives determine 
the concentration of grid points near the source. 

The difference equations, which are based on Jameson’s rotated scheme [g], are 
solved by line relaxation. We use a nonconservative scheme in order to model the 
interaction of the boundary layer and the shocks j[6). 

For a design run, a smooth upper surface speed distribution is specified. An 
exponential spline routine makes it possible to construct such a distribution from a 
few parameters based on the wing’s original speed distribution [7, lo]. The upper 
wing surface is treated as a free boundary which is allowed to move during the 
course of the relaxation procedure in order to achieve the specified speed 
distribution. If the relaxation iterations are viewed as steps in an artificial time 
parameter t, the rule for the motion of the wing surface can be written [7] 

where Q = q(X, Z) - yO(X, Z) is the difference between the computed and the 
specified speed distributions. This rule, which is based on linearized theory IS;, is 
applied subject to a constraint S 3 S,, where S, represents an inner wing structure, 
The constants aj are adjusted so that the iterations converge. 

We generally terminate the computation once the speed distribution is smoothed 
out, which is usually long before the design procedure converges. 
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3. MODEL OF AN ENGINE NACELLE 

In the incompressible case, source distributions for modeling obstacles are often 
made up of delta functions or point sources. In the corresponding compressible case 
we solve a discretized version of the inhomogeneous potential equation (1) with a 
source distribution given by a function fi,j,k which is nonzero at only one or two 
grid points. It is important to keep in mind that a mass source distribution f yields 
an inhomogeneous term (c2/p)f for the potential equation. 

With such a source distribution, we have limited control over the shape of the 
obstacle. It will be a semi-infinite cylinder. If the grid size near the source is 
adjusted correctly, as we shall discuss below, the cylinder will be circular and will 
have approximately the shape of a Rankine ogive. Fortunately, such a shape is 
sufficiently close to the shape of an engine nacelle for our purpose. 

For simplicity assume that f is nonzero at exactly one grid point (-‘co, jlO, z,), 
with indices i,,, j,,, kO. If the asymptotic corss-sectional area of the nacelle A, is 
specified, we can determine the value of f, which will produce this area by 
integrating the mass equation, V (y V4 j =J: I n order to perform the integration we 
must extend f to a function of the continuous variables. We do this by the formula 

f($ F,2)=fo(1-(y)‘)(1-(yq2)(1-(yy) 

in the computational domain for points in grid boxes adjacent to the source point, 
and elsewhere we set f= 0. Of several integration schemes which were tried this one 
gave the best results; i.e., this one best represents the way the difference scheme 
responds to the source. The integration yields 

where V is the total volume in physical space of the grid boxes adjacent to the 
source. 

For fixed A, we have a one-parameter family of values off and V. For large V 
the obstacle will not be clearly defined; i.e., there will be no stagnation point, no 
dividing streamline, and no way of establishing a shape and position for the 
obstacle. This situation can be illustrated by the following example of a two-dimen- 
sional incompressible flow. We introduce a radially symmetric source distribution 
given by a Gaussian (k/B) ~~~~~~ into a uniform flow with potential x. The constant 
k is proportional to the source strength. The parameter /3 measures the concen- 
tration of the source, with small beta representing high concentration. The velocity 
on the x axis is then given by 
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In the limit as p -+ 0 we get the point source solution. An application of the mean 
value theorem to the function xu(x, 0) shows that no stagnation point and thus no 
dividing streamline exists for fl> 2k2. 

In the numerical solution of the potential equation a similar situation exists, with 
the grid size taking the place of p. In order to represent a nacelle on the coarse 
grids which must often be used for three-dimensional calculations, we must reduce 
the grid size near the source. This local grid refinement is also necessary in some 
cases to obtain an obstacle with an asymptotically circular cross section; if the grid 
size in one direction is substantially larger than that in another, we will obtain an 
oblong cross section. We adjust the grid spacing by altering the mapping to 
computational coordinates, using the polynomials I’.$,( 8) and p(z) [IlO]. 

At transonic speeds cavitation may occur near a source which is sufficiently 
strong and concentrated to produce a clearly defined obstacle of the size of art 
engine nacelle. We overcome this difficulty by replacing the potential equation (I? 
with a constant coefficient equation near the source. The equation we use is 
obtained by replacing the velocity components II, 17, and \v, and the sound speed c 
by II,., c,, HJ~, and l/M,x, i.e., by freezing the coefficients at their free stream 
values. This amounts to treating the fluid as incompressible near the source. In 
physical coordinates the corresponding equation becomes 

where E is the angle of attack. 
The use of this equation near the source in no way affects the validity of our 

solution; the altered equation is applied only inside the nacelle. We are not concer- 
ned with the details of the flow in this region, but only with producing an obstacle. 
The use of Eq. (2) near the source also facilitates the specification of the nacelle size. 
In our formulation, in which we specify the inhomogeneous term for the potential 
equation, the effective source strength in the compressible case is a function of the 
density at the source point. At the surface where the fluid flows out of the constant 
coefficient region, pm is a good approximation to the density. Therefore we can 
accurately estimate the nacelle size by specifying the source strength as if for an 
incompressible flow with constant density pr,. 

No special considerations are necessary for differencing in the constant coefficient 
region. The type-sensitive scheme automatically treats the equation as elliptic, since 
we freeze the speed at a subsonic value. 

When I# has been computed we locate and plot the engine nacelle by tracing 
streamlines near its surface. In this way we also check its asymptotic cross-sectional 
area. We trace the streamlines by solving the system of ordinary differential 
equations 
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in the computational domain, where J is the Jacobian matrix of the coordinate 
mapping. In order to carry out the integration we must interpolate the derivatives 
of 4 for points not on the grid. We assume that 4 is the restriction to grid points of 
a smooth function of the same name. At a point (T, F, 2) we expand 4 in a power 
series and express 4 at neighboring grid points in terms of this series. We then take 
a weighted average of these expressions to obtain a second-order approximation to 
the desired derivative. 

We first locate the stagnation point, which we take as the tip of the nacelle. Once 
the stagnation point has been Found, we construct a small circle in a plane perpen- 
dicular to the free stream velocity, just upstream of the stagnation point. Several 
streamlines are begun at equal spacings on this circle. The streamlines are traced 
using a fourth-order, variable step-size, Adams predictor-corrector method. They 
are terminated in the far field on a plane perpendicular to the free stream, and a 
trigonometric interpolant is passed through the termination points. We use this 
interpolant to compute the final stream tube cross-sectional area, and then subtract 
off the area due to the mass flux into the stream tube through the original circle to 
obtain the nacelle cross-sectional area. The area computed in this way generally 
agrees with the input A, to within lCLl.5 %. 

The nacelle is plotted along with the wing and shocks (see Fig. 3) as a circular 
cylinder of area A, centered on the line x=x0. 

4. WAVE DRAG 

Any method for redesigning transonic wings must be based on an accurate 
method for approximating wave drag. In this section we present such a method due 
to Garabedian [6]. A basic difficulty in computing wave drag, numerically or 
experimentally, is separating it from other forms of drag. For a flow with sharp 
shocks, we can compute the wave drag from the jumps in the flow quantities at the 
shocks. However, flows computed by artificial viscosity methods have smeared 
shocks, so it is not clear how to define the shock jumps. The method we shall 
describe overcomes these difficulties by computing the wave drag as an integral of 
the artificial viscosity. 

Retarded difference schemes capture shocks by effectively adding artificial 
viscosity to the equation in the supersonic zone. For simplicity we shall discuss 
difference schemes for the two-dimensional potential equation. If we expand the 
numerical solution in a Taylor series and drop terms of higher than first order in 
the grid size h, we obtain the modified equation 

(c’ - u2) d,, + (c” - 0’) d,, - 2Ur$,, = q (3) 
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in the supersonic zone. We consider only schemes which are second-order accurate 
in the subsonic zone, so the modified equation agrees with the potential equation 
there. The artificial viscosity tj is O(h) in regions of smooth flow. The form of 11 
characterizes the difference scheme. For example, q = h(c2 - u’) b,, for the stan- 
dard nonconservative scheme on a rectangular grid, 9 =h(~~/p)(&~).~.~ for the 
analogous conservative scheme. Rotated differencing and mapped coordinates, both 
of which are used in our code, complicate the expression for r/. 

To recover the mass or .v-momentum equations from the potential equation we 
multiply by p/c’ or pu/c’. From Eq. (3) we thus see that the artificial viscosity 
yields a mass source (p/c>) ye and an x-momentum source (puic’) q in the super- 
sonic zone D. An amount 

of x-momentum is created per unit time in the supersonic zone, and an amount 

flows into the far field. The momentum rise is balanced by a force 

on the wing which, for a conservative scheme, is the wave drag. 
For a nonconservative scheme the expression (4) will be of second order in the 

shock strength, whereas the wave drag is of third order. To obtain the correct 
expression for the wave drag Dw we must subtract 

from (4) to yield 

D,,.=lim J! 
(u-c’)yjdxdy 

h+O D 
(5) 

where ck. is the critical speed. This expression is of third order in the shock strength, 
and it reduces in the limit /I-+ 0 to the standard line integral for the wave drag 
[lo]. The correction term has the following interpretation: it is the force which 
decelerates the excess mass produced by the nonconservative scheme from the 
critical speed c*, which is the speed it has when it leaves the supersonic zone, to the 
far field speed U, . Since this force is a numerical effect, it must not be considered 
part of the wave drag. 
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For particular forms of q, the expression (5) can be integrated by parts to yield 
expressions with positive integrands. For example, for the nonconservative 9 
described above we have 

up to fourth order in the shock strength. We can use this type of expression to show 
that the entropy condition is enforced [IO]. The integrand of such an expression 
provides a local measure of wave drag which is useful for wing redesign, shock 
plotting (cf. Figs. 1 and 2), and local grid refinement. 

In practice we simply drop the limit in expression (6), and evaluate the integrand 
using central differences. The integral is computed by the trapezoid rule. We 
exclude contributions from rarefaction waves since these vanish in the limit. 

5. COMPUT.I\TIONAL RESULTS 

In this section we discuss the results of a series of runs of our code. We started 
with an analysis run followed by a design run. Then another analysis run was made 
with a nacelle inserted in the flow. The final run was a design run with the nacelle in 
place. For the series described here, the nacelle was above and behind the wing. 

The development of the code and some crude grid tests were done on a VAX 
1 l/780 at the Courant Institute. The line grid tests described here were made on the 
CRAY E computer of the Lawrence Livermore Laboratory using a vectorized 
relaxation routine which was written by F. Bauer. Analysis runs took, on the 
average, 7 or 8 min of CPU time on the CRAY, and design runs took about 10, 
using a 192 x 28 x 24 grid. 

UPPER SURFACE PRESSURE WING AND SHOCKS 

M = .81 CL = .50 CDW = .0060 A = 3.8 

FIG. 1. Original wing. 
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UPPER SURFACE PRESSURE WING AND SHOCKS 

M = .81 CL = .SO CDW = .DOll A = 3.8 

FIG. 2. Redesigned wing. 

The wing we used was based on a supercritical airfoil designed by J. Sanz with a 
complex characteristic hodograph code [3]. The airfoil was designed to be 
shockless at h4, = 0.75 and CL = 0.5. The thickness-chord ratio is 0.13. The leading 
edge was swept back 30” and the wing was tapered linearly so the chord at the wing 
tip was 0.56 of the chord at the root. The aspect ratio was 3.5. 

Some corrections to the original wing specificatom were made to account for 
three-dimensional effects. In order to obtain an effective free stream Mach number 
of 0.75 normal to the wing we divided 0.75 by the cosine of the mean sweep angle 
so M, = 0.81= 0.75/cos(22”). Following this reasoning we note that the thickness- 
chord ratio by the same factor, so we also thinned the wing by a factor of cos(22”). 
The wing was twisted up 2.4” at the root relative to the tip. 

Figure 1 shows the plotted output from the initial analysis run. A wave drag coef- 
ficient C D RZ = 0.0060 is associated witht the strong shock wave which terminates the 
supersonic zone. In Fig. 2 we see the wing after it has been redesigned using the free 
boundary feature of the code. The wave drag is down to C,,, = 0.0011: A weak 
shock remains near the wing root. This is typical of our experience with the design 
code. 

Figure 3 shows the results of an analysis run with a nacelle above and behing the 
redesigned wing. The nacelle diameter is 0.25 of the chord in the span station of the 
nacelle. A wave drag coefficient CD,= 0.0028 is associated with the shock which 
has reappeared at the rear of the supersonic zone. The shock is, on the average. 
10 % forward of its position on the original wing. In the span station of the nacelle 
it has moved forward by 16 %. The angle of attack was increased from 0.7’ to 2.G’ 
to compensate for the loss of lift due to the presence of the nacelle. This has caused 
the shock near the wing tip, which is barely noticeable in Fig. 1, to increase in 
strength. The loss of lift is not distributed uniformly along the span; there is a 
marked dip in the lift in the span station containing the nacelle. In order to recover 
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UPPER SURFACE PRESSURE WING AND SHOCKS 

M = .81 CL = .50 CDW = .0028 A = 3.8 

FIG. 3. The wing from Fig. 2 with a nacelle. 

the original lift distribution it was necessary to twist the wing sections near the 
nacelle. 

Results from the final run are shown in Fig. 4. Here the wing has been redesigned 
with the nacelle in place. The wing section in the span station of the nacelle has 
been twisted an additional 0.5” in order to recover the original lift distribution. The 
wave drag is down to CDW= 0.0007. The shocks are essentially gone even at the 
wing root where a shock persisted after our first design run. 

Other tests of the code were made with the nacelle in various positions. In all 
cases we were able to eliminate the shocks by first twisting the wing locally to 
restore the lift distribution and then applying the free boundary iteration. 

UPPER SURFACE PRESSURE WING AND SHOCKS 

M = .81 CL = .5D CDW = .OOD? A = 3.8 

FIG. 4. Wing after being redesigned with the nacelle in place. 
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